104 research outputs found

    Toll-like receptor signaling adapter proteins govern spread of neuropathic pain and recovery following nerve injury in male mice.

    Get PDF
    BackgroundSpinal Toll-like receptors (TLRs) and signaling intermediaries have been implicated in persistent pain states. We examined the roles of two major TLR signaling pathways and selected TLRs in a mononeuropathic allodynia.MethodsL5 spinal nerve ligation (SNL) was performed in wild type (WT, C57BL/6) male and female mice and in male Tlr2-/-Tlr3-/-, Tlr4-/-, Tlr5-/-, Myd88-/-, Triflps2, Myd88/Triflps2, Tnf-/-, and Ifnar1-/- mice. We also examined L5 ligation in Tlr4-/- female mice. We examined tactile allodynia using von Frey hairs. Iba-1 (microglia) and GFAP (astrocytes) were assessed in spinal cords by immunostaining. Tactile thresholds were analyzed by 1- and 2-way ANOVA and the Bonferroni post hoc test was used.ResultsIn WT male and female mice, SNL lesions resulted in a persistent and robust ipsilateral, tactile allodynia. In males with TLR2, 3, 4, or 5 deficiencies, tactile allodynia was significantly, but incompletely, reversed (approximately 50%) as compared to WT. This effect was not seen in female Tlr4-/- mice. Increases in ipsilateral lumbar Iba-1 and GFAP were seen in mutant and WT mice. Mice deficient in MyD88, or MyD88 and TRIF, showed an approximately 50% reduction in withdrawal thresholds and reduced ipsilateral Iba-1. In contrast, TRIF and interferon receptor null mice developed a profound ipsilateral and contralateral tactile allodynia. In lumbar sections of the spinal cords, we observed a greater increase in Iba-1 immunoreactivity in the TRIF-signaling deficient mice as compared to WT, but no significant increase in GFAP. Removing MyD88 abrogated the contralateral allodynia in the TRIF signaling-deficient mice. Conversely, IFNβ, released downstream to TRIF signaling, administered intrathecally, temporarily reversed the tactile allodynia.ConclusionsThese observations suggest a critical role for the MyD88 pathway in initiating neuropathic pain, but a distinct role for the TRIF pathway and interferon in regulating neuropathic pain phenotypes in male mice

    Bilateral Sensory Abnormalities in Patients with Unilateral Neuropathic Pain; A Quantitative Sensory Testing (QST) Study

    Get PDF
    In patients who experience unilateral chronic pain, abnormal sensory perception at the non-painful side has been reported. Contralateral sensory changes in these patients have been given little attention, possibly because they are regarded as clinically irrelevant. Still, bilateral sensory changes in these patients could become clinically relevant if they challenge the correct identification of their sensory dysfunction in terms of hyperalgesia and allodynia. Therefore, we have used the standardized quantitative sensory testing (QST) protocol of the German Research Network on Neuropathic Pain (DFNS) to investigate somatosensory function at the painful side and the corresponding non-painful side in unilateral neuropathic pain patients using gender- and age-matched healthy volunteers as a reference cohort. Sensory abnormalities were observed across all QST parameters at the painful side, but also, to a lesser extent, at the contralateral, non-painful side. Similar relative distributions regarding sensory loss/gain for non-nociceptive and nociceptive stimuli were found for both sides. Once a sensory abnormality for a QST parameter at the affected side was observed, the prevalence of an abnormality for the same parameter at the non-affected side was as high as 57% (for Pressure Pain Threshold). Our results show that bilateral sensory dysfunction in patients with unilateral neuropathic pain is more rule than exception. Therefore, this phenomenon should be taken into account for appropriate diagnostic evaluation in clinical practice. This is particularly true for mechanical stimuli where the 95% Confidence Interval for the prevalence of sensory abnormalities at the non-painful side ranges between 33% and 50%

    Regulation of peripheral blood flow in Complex Regional Pain Syndrome: clinical implication for symptomatic relief and pain management

    Get PDF
    Background. During the chronic stage of Complex Regional Pain Syndrome (CRPS), impaired microcirculation is related to increased vasoconstriction, tissue hypoxia, and metabolic tissue acidosis in the affected limb. Several mechanisms may be responsible for the ischemia and pain in chronic cold CPRS. Discussion. The diminished blood flow may be caused by either sympathetic dysfunction, hypersensitivity to circulating catecholamines, or endothelial dysfunction. The pain may be of neuropathic, inflammatory, nociceptive, or functional nature, or of mixed origin. Summary. The origin of the pain should be the basis of the symptomatic therapy. Since the difference in temperature between both hands fluctuates over time in cold CRPS, when in doubt, the clinician should prioritize the patient's report of a persistent cold extremity over clinical tests that show no difference. Future research should focus on developing easily applied methods for clinical use to differentiate between central and peripheral blood flow regulation disorders in individual patients

    Research designs considerations for chronic pain prevention clinical trials: IMMPACT recommendations

    Get PDF
    Although certain risk factors can identify individuals who aremost likely to develop chronic pain, few interventions to prevent chronic pain have been identified. To facilitate the identification of preventive interventions, an IMMPACTmeeting was convened to discuss research design considerations for clinical trials investigating the prevention of chronic pain. We present general design considerations for prevention trials in populations that are at relatively high risk for developing chronic pain. Specific design considerations included subject identification, timing and duration of treatment, outcomes, timing of assessment, and adjusting for risk factors in the analyses.We provide a detailed examination of 4 models of chronic pain prevention (ie, chronic postsurgical pain, postherpetic neuralgia, chronic low back pain, and painful chemotherapy-induced peripheral neuropathy). The issues discussed can, inmany instances, be extrapolated to other chronic pain conditions. These examples were selected because they are representative models of primary and secondary prevention, reflect persistent pain resulting from multiple insults (ie, surgery, viral infection, injury, and toxic or noxious element exposure), and are chronically painful conditions that are treated with a range of interventions. Improvements in the design of chronic pain prevention trials could improve assay sensitivity and thus accelerate the identification of efficacious interventions. Such interventions would have the potential to reduce the prevalence of chronic pain in the population. Additionally, standardization of outcomes in prevention clinical trials will facilitate meta-analyses and systematic reviews and improve detection of preventive strategies emerging from clinical trials

    Neuroinflammation, Neuroautoimmunity, and the Co-Morbidities of Complex Regional Pain Syndrome

    Full text link

    Helping children to take control of their emotions

    No full text
    corecore